
Grid-Interop Forum 2010
1

Overcoming Challenges Using the CIM as a Semantic Model for Energy

Applications

Andrew Crapo (crapo@research.ge.com)
1

Katrina Griffith (KatrinaM.Grifith@ge.com)
 2

Ankesh Khandelwal (ankesh@cs.rpi.edu)
 3

John Lizzi (lizzi@research.ge.com)
 1

Abha Moitra (Abha.Moitra@research.ge.com)
 1

Xiaofeng Wang (wang.xiaofeng@ge.com)
 2

1
GE Global Research, Niskayuna, NY

2
GE Energy, Melbourne, FL

3
Rensselaer Polytechnic Institute, Troy, NY

Keywords: Smart Grid, Interoperability, Semantic Models

Abstract

CIM is the key to smart grid interoperability. This being the

case, we are experimenting with different approaches to

utilizing the CIM as a semantic model for Energy

applications. In this paper we identify some of the

challenges we have encountered applying an OWL

representation of the CIM to a common industry application
for network model validation. Some challenges have to do

with differences between UML, the language in which the

CIM is maintained, and RDF/OWL, the semantic

representation we have chosen for our experiment. We

highlight some of differences between UML and OWL and

discuss what they might mean in a smart grid context and

the advantages and disadvantages of using each

representation in Energy applications. Still other problems

have to do with the processes around translating the CIM

models from UML to OWL and managing model changes.

Finally we propose some necessary conditions for

addressing these challenges.

1. INTRODUCTION
It has been proposed that shared semantic models will be the

foundation of interoperability for the smart grid [1]. This is

supported by the GridWise Architecture Council’s

Interoperability Framework, where semantics is not only a

central layer but also addresses many of the cross-cutting

issues [2]. Semantic models ensure that the individual data

sources do not define the semantics and the syntax of the

data [3]. Rather these are defined by shared models. The

International Electrotechnical Commission (IEC) Common

Information Model (CIM) represents the most complete and
widely accepted model for generation, transmission, and

distribution of electrical energy. Using the CIM as a starting

point, we are evaluating the potential of semantic

technology, as envisioned by the Semantic Web community,

as a basis for building model-driven applications for smart

grid functionality such as network model validation and

network tracing. Our network tracing use case focuses on

determining what equipment in an electrical network is

topologically (electrically) connected to other equipment.
This paper reports our initial experiences and conclusions

from our investigation. We have found both promise and

challenge in applying semantic technology to our smart grid

use cases. Some challenges have to do with the CIM and the

processes around its evolution. Other challenges have to do

with applying semantic technology and suggest the need for

better tools to support modeling and model application.

2. THE CIM AS A SEMANTIC MODEL
The CIM is expressed and maintained in the Unified

Modeling Language (UML). However, the Web Ontology

Language (OWL) is better suited to our objectives of model-

driven applications and interoperability for several reasons.
An OWL model can be checked for consistency and

validated against given criteria using available reasoners

whose behavior is specified by open standards. OWL

models provide a conceptual foundation upon which to layer

domain knowledge captured as rules. For example, domain

knowledge for our use case included how to trace a network

taking into account switch positions, transformers, and

phase.

While there is an IEC standard covering the generation of

RDF Schema from the CIM-UML, the standard does not

address generation of an OWL version of the CIM [4]. We
were able to obtain two versions of the CIM in OWL

representation, which we used in our research. We are aware

 Crapo, Griffith, Khandelwal, Lizzi, Moitra, and Wang

Grid-Interop Forum 2010
2

that these translations were not guided by an accepted

standard. In fact, one of the purposes of this paper is to

suggest some of the issues that need to be addressed by such

a standard.

While a model in either UML or OWL might be considered

a “semantic model”, there are some important differences.
The two modeling languages were designed for different

purposes from differing points of view and have different

strengths and weaknesses. UML was born in the software

engineering domain as a language for designing object-

oriented software artifacts. It has also been used extensively

for data modeling. OWL has its origin in formal modeling

and logical inference and classification. It is instructive to

explore some of the important similarities and differences

between UML and OWL, especially as they relate to

modeling for the smart grid. Unless otherwise noted, the

primary reference for the comparison that follows is the

Ontology Definition Metamodel, Version 1.0 [5].

The meta-model of UML (expressed in OMG’s Meta-Object

Facility, or MOF) captures four main concepts: 1) classes,

2) associations, 3) datatypes, and 4) packages. Also

expressible in MOF [6], the OWL meta-model includes 1)

classes, 2) properties, 3) instances, 4) literals, and 5)

ontologies. Each meta-model includes other concepts such

as cardinality. There is a reasonable correspondence

between the two meta-models. The differences of

significance are in the details.

A UML class and an OWL class are both based on set

theory and so correspond reasonably well. However,
OWL’s set semantics are more complete. UML associations

can be translated to OWL properties although the UML

meta-model is much more complex. UML associations are

defined only in the context of the classes at the end points

whereas OWL properties are first class citizens and can

exist independent of any domain or range specification.

Individuals in OWL can exist and have properties

independent of any class membership while UML runtime

instances exist only at the MOF M0 level and so exist as

instances of a specific class. A UML package, which

corresponds to an XML namespace, is more or less

equivalent to an OWL ontology, although the details of
naming and importing are not identical. UML lacks a formal

model-theoretic semantics and what might be expressed as

class restrictions in OWL require constraints in the Object

Constraint Language (OCL) for a UML model. As OCL has

neither a formal model theory nor a formal proof theory,

automated reasoning over UML models is not possible, or at

least not well defined.

It has been suggested that the CIM will eventually be

expressed and maintained as a set of ontologies within a

federation of ontologies [7]. Such a modular and integrated

view of the CIM leverages the modular and extensible

capabilities of OWL and the envisioned distributed nature of

ontologies in the Semantic Web. OWL is designed to

facilitate the organization of models in a hierarchy of

imported models with “core” or “upper-level” models at the

root. More specialized (e.g., CIM package-specific) or

lower-level models then extend the root models with
additional classes, subclasses, properties, rules, etc.

A hierarchical model structure is consistent with the nature

of UML, where packages create a hierarchy of imports.

Each package corresponds to a single namespace. Figure 1

shows some of the package structure of the UML CIM

model. Of course the overall model structure is not always a

hierarchy—packages may import each other, directly or

indirectly, creating a lattice of submodels.

Figure 1: Partial Package Structure of CIM in UML

At a more abstract level, Figure 1 in Becker and Saxton [3,

pg 3] shows three-layer enterprise semantic model

architecture. The CIM resides in the top Information layer
while profiles reside in the next-lower Contextual layer and

“define a subset of the models in the Information layer

needed for a particular business purpose”. A UML profile

can both extend a UML model and identify a subset of the

base model in an additive manner [8]. Since UML profiles

can import other profiles, it should be possible to use UML

profiles to create a set of OWL models which, via the

owl:imports functionality, form a hierarchy of models with

the most specific models being created by profiles not

imported by any other profile. OWL imports will also

support a lattice model structure.

In summary, while there are differences in UML and OWL

models, the UML representation of CIM provides most of

 Crapo, Griffith, Khandelwal, Lizzi, Moitra, and Wang

Grid-Interop Forum 2010
3

the information that one would want in a set of OWL

models, provided that the translation preserves modularity.

3. BENEFITS OF USING CIM IN OWL FORMAT
Several benefits of using an OWL version of the CIM are

apparent from our research.

3.1. Extensibility of the CIM
We found it very easy to extend the CIM model by defining

new subclasses of existing CIM classes and by defining

additional properties on existing CIM classes. These

extensions, defined in new ontologies that imported the

CIM OWL model, worked very well as the basis for

composing rules that utilize both CIM concepts and new

concepts and/or new properties in the same rule. This made

it easy to make small, independent extensions of the CIM to

achieve specific purposes.

3.2. Executable Models
One of the biggest benefits of using OWL was the

executable nature of the models. Using the SADL-IDE [9]
as a development environment, we generated test cases that

imported the appropriate CIM concepts and/or extensions.

(SADL models are translated to OWL and rule files, which

are then used by the reasoner to do logical entailment, rule-

based inference, and answer queries.) A test case explicitly

tested for specific inferred values and/or included queries

that displayed inference results. Test case results were

accompanied, if desired, by derivation information, at either

a shallow or a deep level, to provide a logical explanation of

how values were derived. This made the building and

testing of models and rules a very interactive process,
leading to a much shorter design cycle than one would

expect if UML models were used to generate source code,

which would then require additional test code to be written

to exercise and validate the models.

3.3. Model Validation
Validation of OWL models can occur at multiple levels. At

one level an OWL reasoner, such as Jena or Pellet, can

detect logical inconsistencies in models or instance data. At

another level a modeler can explicitly generate a set of

validation rules that test instance data to make sure that it

conforms to cardinality or other constraints. We found it

relatively easy to do instance data validation using either
method or a combination of the two.

3.4. Integrating Domain Logic as Rules
In our investigations, we found that we were able to

incorporate domain logic into rules in a straightforward

manner for both network model validation and network

tracing. For example, we were able to formulate phase

compliance checks as part of network tracing.

4. CHALLENGES USING THE CIM
Some of the challenges we encountered in our research were

due to the nature of the OWL version of the CIM model. In

large measure these issues arose from the way the CIM was

translated from UML to OWL rather than to fundamental

differences between UML and OWL.

4.1. Modularity and Namespaces
Modularity is very import in large, complex models. Proper

modularization of a model enables parallel development and

maintenance of the individual submodels, makes it easer for

people to grasp the overall model structure, and allows

appropriate parts of the model to be utilized for different

purposes without requiring that extraneous model elements

be included. Of course the interfaces between the modules

must be well-managed.

The OWL CIM models we used had all available

namespaces (packages) mixed in a single model file with no

use of the namespace (base URI) of this file in the file
content. This was unexpected based on our previous

experience using hierarchical models expressed in OWL. It

necessitated that we load the entire model regardless of what

parts were actually needed. It also made it difficult to

comprehend what was in the model as there was no higher-

level view of model structure readily available.

This problem clearly derived from the translation of UML to

OWL rather than in the CIM itself. However, it did

highlight the need to preserve the CIM structure in the

translation process so that the designed capacities of OWL

to organize models into a lattice or hierarchy can be fully
leveraged. Interestingly, in one of the translations we

utilized, the OWL model included a namespace for “UML”

and within that namespace defined a Package class used

only in values of the annotation property rdfs:isDefinedBy.

(Annotation properties are used in OWL to document the

model but are not normally used in logical inference.)

Nesting of annotations was used to capture the UML

package hierarchy. For example, the CIM concept

HydroTurbine was defined by the Package instance

Package_GenerationDynamics, which in turn was defined

by the Package instance Package_Generation, which in turn

was defined by the Package instance Package_IEC61970.
As a result, the package hierarchy of the UML model was

not actually reflected in a hierarchy of ontologies and OWL

imports. As annotations, the package structure was

explicitly excluded from normal reasoning processes. It is

important to generate OWL models that enable the

modularity and reasoning capabilities that are OWL

strengths.

4.2. Datatypes
Another challenge was found in the inconsistent handling of

datatypes. When datatypes such as strings, numbers, dates,

 Crapo, Griffith, Khandelwal, Lizzi, Moitra, and Wang

Grid-Interop Forum 2010
4

etc. specified in the UML model are translated to OWL, it is

highly desirable that they appear as XML Schema primitive

datatypes. This allows the built-in capabilities of reasoners,

rule engines, and query engines to properly handle routine

tasks such as arithmetic operations, comparisons, and

regular expression matching. It also permits model
consistency checking to be more useful. The alternative is to

custom-build new plug-in capabilities to handle essentially

equivalent but model-specific datatypes or classes.

Vestiges of this problem were apparent in our OWL CIM

models. In one version, an rdfs:Datatype named String was

defined in the model namespace but no further definition

was provided, making it impossible to relate it to an

xsd:string. A comment annotated String: “A string

consisting of a sequence of 8 bit characters…” In the other

version of a CIM OWL model, properties were defined as

being of type owl:DatatypeProperty but then given an

owl:Class as a range. For example, the
owl:DatatypeProperty TransformerWinding.xground had

range Reactance, an owl:Class. This violates the definition

of DatatypeProperty in OWL. The latter was clearly a

translation issue but the former translation may be

consistent with IEC 61970-501 [5]

5. CHALLENGES USING SEMANTIC MODELS
Some challenges we encountered were due to the nature of

semantic modeling itself, and not CIM or smart grid

specific.

5.1. Efficient Representation of Rules, Efficient

Queries
We found that performance of rules and queries depended

dramatically on their exact formulation Getting these

formulations right is knowledge that may be difficult for a

domain expert to acquire. Note that by rule we mean a set

of premises, also known as the rule body, associated with a

set of conclusions, also known as the rule head. If all of the

conditions in the premises are satisfied, the rule “fires” and

the conclusions are effected, potentially inserting new

triples into the knowledge base (triple store). The individual

conditions of the premise and the individual consequences

of the conclusions are referred to as clauses. While this

section addresses only rules, queries that select information
from the knowledge base are subject to similar differences

in performance depending on how they are structured and

therefore are candidates for optimization.

We found that the techniques and styles of rule writing for

efficiency can be broadly classified into two categories –

those that are independent of the reasoner being employed

and other techniques that are specifically geared to a

specific reasoner. Some of the reasoner independent

techniques correspond to well known techniques from

software engineering, database query optimization, etc.

Reasoner-dependent techniques were driven by reasoner

characteristics, i.e., whether the reasoner used forward or

backward reasoning. Some of the techniques for writing

rules efficiently are as follows.

• Reorder the clauses in order to reduce the amount

of matching instance data as early as possible. For
example, if one clause matched on (a) the property

cim:ConductingEquipment.ClearanceTag having a

value and another class matched on (b) the

property cim:ConductingEquipment.Terminals

having a value, and it was known that few

instances would match clause (a) while many more

instances would match clause (b), then clause (a)

should appear first.

• Refactor the rules to pull out common clauses from

multiple rules as a separate rule so that they are

evaluated fewer times.

• Convert expensive checks into equivalent but less

expensive checks if possible. For example, if the

type can be inferred by checking for a property

assertion, then expensive type inference through

subclass inference can be avoided.

• Formulate recursive definitions for predicates as a

combination of a non-recursive part (also known as

a stop predicate) and a recursive part.

• Use tabling for recursive rules if backward rules

are being used. We found that left recursion

(evaluating recursive clause before stop predicate)

works better for reasoners that support tabling. If
the reasoner doesn’t support tabling then right

recursion (evaluating stop predicate before

recursive clause) gives better performance.

• Some reasoners natively support OWL inference,

but if one is interested only in partial OWL

inference then turning off native support and

introducing explicit rules for OWL inferences of

interest may improve performance.

• If the reasoner supports backward rules (goal

directed reasoning), convert forward rules into

backward rules whenever possible.

• In backward reasoning, duplicate rules and reorder

clauses differently for different combination of

variable bindings. The order should be dictated by

the variables that are bound. For example, the rule

that infers the transitive “ancestorOf” relationship

can be duplicated for four different scenarios.

When the ancestor is bound, the following rule is

used:

 Crapo, Griffith, Khandelwal, Lizzi, Moitra, and Wang

Grid-Interop Forum 2010
5

#left bound

[ANC-lb: (?p1 ancestorOf ?p3) <-

 bound(?p1),

 (?p1 ancestorOf ?p2) ,

 (?p2 parentOf ?p3)]

Whereas when the descendant is bound, the

following rule is used:

#left unbound

[ANC-rb: (?p1 ancestorOf ?p3) <-

 bound(?p3),

 (?p2 ancestorOf ?p3) ,

 (?p1 parentOf ?p2)]

Note that the ordering is such that the clause with a

bound variable occurs before the rest of the

clauses. This helps in reducing the matching
instance data. When neither of the variables, or

both the variables are bound the order does not

matter.

• Reorder “not” and boolean built-ins for late but

eager evaluation. That is, these clauses should be

ordered so that they appear as soon as all the

needed variables are bound.

5.2. Open World versus Closed World
OWL reasoners normally operate under an open world

assumption (OWA). This essentially means that something

cannot be concluded to be false just because it isn’t
currently known to be true. Geared towards distributed

knowledge in a World Wide Web, this makes sense. It is

unlikely that one can ever assume that all facts are known—

we know what we know and not anything else (yet).

However, the OWA can lead to some initially surprising

results. For example, we placed a cardinality restriction on

cim:EnergyConsumer requiring it to be related by

cim:Terminal.ConductingEquipment to an instance of

cim:Terminal. Then we created a test case with an instance

of cim:EnergyConsumer without such a relationship and

asked the reasoner to validate the model. The lack of any

complaint was surprising until we realized that under the
OWA we could not expect the reasoner to conclude that just

because it didn’t know about such a relationship did not

mean it could conclude that there wasn’t one and so the

cardinality constraint was not identified as a violation. Note

that we were able to implement constraint checking on

existing data using a custom Jena built-in function as a

validation rule premise. The built-in, which is a black box to

the reasoner, views the data under the Closed World

Assumption (CWA).

5.3. Understanding Negation and How It Can Be Used
OWL is based on classical negation, which is monotonic

under the OWA. This means that if something is proven to

be false, addition of new information does not change that.

Under the CWA negation is non-monotonic. There are

algorithms of differing complexities to evaluate rules with
non-monotonic negation. The difference in reasoning

approach (algorithm) leads to differences in the semantics of

rules with negation, and differences in the semantics leads

to differences in expressiveness.

Examples of different semantics/negations include, in order

of their expressiveness: monotonic negation, predicate-

stratified negation, locally-stratified negation, well founded

semantics (WFS), answer set semantics, and stable model

semantics. The latter 3 are most general and equally

expressive. When an algorithm is applied to rules with

higher expressiveness, non-sound results may be deduced.

6. REASONER/RULE ENGINE EVALUATION
Network tracing was our most complex use case from a

performance and scale perspective and was utilized to

evaluate possible reasoners/rule engines. The network

tracing use case consisted of two parts. The first, simpler

use case was focused on being able to define the set of

instances of cim:ConductingEquipment (CE) “directly

connected to” a given instance of CE. The second, more

complex use case was defined as “topologically connected

to”. This use case focused on defining the set of instances

of CE electrically connected to a given instance of CE.

Both use cases were executed using data sets ranging from
10,000 to 240,000 triples.

We evaluated several reasoners/rule engines for potential

use in executing our use cases. These fell into three

categories: 1) Java-based generic rule engines, 2) general-

purpose logic programming systems, and 3) more targeted

“semantic” reasoners (reasoners that accept RDF data and

natively support OWL semantics). The goal of this

evaluation was to illuminate the CIM model execution

landscape with respect to these technologies and key

attributes of interest (execution time, scalability, etc.), and

to subsequently direct the next generation of proof of

concept development.

In the first category we evaluated Drools and JRules. In

each case, we translated the CIM-OWL model into Java

code (classes) and a network data set containing about

40,000 triples into an in-memory collection of inter-related

Java instances accessible to the rule engine. While these rule

engines worked well on very small problems, we were

unable to get either to work on a larger data set (> 25,000

triples) without running out of memory, even for the simpler

use case (directly connected) running on a 64-bit machine.

 Crapo, Griffith, Khandelwal, Lizzi, Moitra, and Wang

Grid-Interop Forum 2010
6

In the second category we evaluated XSB and YAP. For a

relatively large data set, YAP ranged from very slow (> 30

minutes) to quite fast (~10 seconds) on the very next run,

reflecting its adaptation of indexing to the problem at hand.

In the third category we initially considered

AllegroGraph®, OntoBroker®, Pellet/SWRL, and Jena. We
did more extensive testing on AllegroGraph®,

OntoBroker® and Jena. AllegroGraph® provided query

results for “topologically connected to” on a data set of over

130,000 triples in approximately 20 seconds. On the same

data set, Ontobroker® (without performance optimization)

gave asymmetrical performance: ~2 seconds for left-bound

(EC1 topologicallyConnectedTo ?X) vs. ~78 seconds (36

secs on a 64 bit machine) for right-bound (?X

topologicallyConnectedTo EC1) queries. After employing

several of the techniques described in Section 5.1, Jena

answered the same query on a data set of 180,000 triples in

~5 seconds.

It is important to note that these rule languages and engines

employ different reasoning methods and support different

expressivities for negation. SWRL doesn't support any form

of negation, Pellet performs sound OWL reasoning and

supports classical negation, Ontobroker® supports WFS

negation, and XSB, YAP and AllegroGraph® are Prolog

implementations that support stable model semantics

(default negation). Jena, through built-ins functions, allows

a rule premise to test for the absence of a triple matching a

simple pattern in the model. Drools and JRules support

negation that can be referred to as being non-logical,
because the evaluation of rules is not based on

(mathematical) logic.

Furthermore, although XSB, YAP and AllegroGraph® are

Prolog implementations, and Jena evaluates backward rules

in similar fashion, XSB, YAP and Jena support tabling of

predicates but AllegroGraph® does not..

We initially scoped the technology landscape along five

dimensions of interest:

• Model storage – CRUD (create, read, update,

delete) performance, support for transactions,

security, storage type, etc.

• Model import/extension/development - model

harmonization, storage standards support, support

for distributed models, modularity, batching

capabilities, etc.

• Model interaction – usability for subject matter

experts (model construction, validation,

maintenance), support for model validation and

inference, model query expressivity and standards

support.

• Business rule extension development – the ability

to leverage existing models to build, validate, and

execute rules.

• Business rule management and integration – the

ability to manage and integrate business rules into

existing components and systems.

Each of the dimensions of interest was further broken down

into individual attributes with defined scales to be used in

scoring the various technologies.

The use cases were utilized to evaluate the aforementioned

technologies versus each attribute. Our initial findings

indicate an integrated stack of technologies (leveraging a

back-end triple store coupled with one or more semantic

rule engines, and a SADL front-end) will provide the best

performance for our attributes of interest. Findings indicate

Ontobroker® and AllegroGraph®, coupled with a SADL

front end scored highest, and warrant the next level of
evaluation. We’ve also found the forward-chaining RETE-

based rule engines do not provide the execution

performance required for our use cases at the scale of

interest due to runtime memory limitations. This is

consistent with findings from previous benchmarking

activity [10].

7. MINIMAL REQUIREMENTS OF SEMANTIC

CIM, DESIRABLE TOOLS CAPABILITIES
Our research to-date suggests that a standard for OWL

generation from UML CIM is very important and that this

standard should ensure that the OWL generated is usable by

semantic tools ranging from model viewers/editors to
reasoner/rule engines and query engines. In addition, our

experience indicates that the success of semantic technology

as a modeling paradigm for smart grid will be significantly

enhanced if the tools enable domain experts to build models

and capture domain rules without being required to gain

deep knowledge of the intricacies of reasoning or rule and

query efficiency. We make the following recommendations.

7.1. Cleaner Tie to Standard Datatypes
The IEC standard for generation of RDF from UML (IEC

61970-501, see [4]) does not appear to make the connection

to XML Schema datatypes. It is important that the standard
for generation of OWL from the UML CIM make that

connection so that the resulting OWL models will be subject

to standard OWL model validation, consistency checking,

reasoning, and querying. It appears that the groundwork for

this is being laid as the CIM|EA Web site reported on

September 1, 2010, “The most exciting new addition to the

tool for this public release is the inclusion of XSD

support…” (see http://www.cimea.org/).

 Crapo, Griffith, Khandelwal, Lizzi, Moitra, and Wang

Grid-Interop Forum 2010
7

7.2. Modularity and Extensibility
Modularity is key to a model’s ability to be maintained and

used by a diverse set of stakeholders. That modularity must

allow “slices” of the model to be used and extended for

specific purposes. The package structure of UML has the

capability to translate to a lattice or hierarchy of OWL
models that can be used in a federation of ontologies [7]. It

is essential that the translation produce a set of OWL

models that in every way maintain the modularity and

structure of the CIM UML model.

7.3. Versioning and Feedback Mechanisms
While this requirement for a robust shared model is not a

direct observation of our research, we will include it for

completeness. Versions of CIM models should be versioned

using the model versioning mechanisms so that reasoners

and other tools that load imported models can verify that

supported versions have been retrieved. A relatively

primitive version mechanism is part of OWL and is a good
starting point. An importing model can specify what

version(s) of an imported model are acceptable.

CIM model users will extend the CIM models to meet their

specific objectives. This will include creating subclasses of

a CIM class when finer granularity is needed and/or adding

new properties when additional information about class

members must be modeled. Some of these extensions will

be model fragments that would be widely useful and should

therefore be factored into future versions of the CIM either

by direct contribution to core submodels or by providing

shared user contribution models. The process for
consolidating feedback to create next versions should be

well-founded and well-documented so that all stakeholders

can contribute to the shared models. Since this is a problem

common to semantic modeling in other domains, a solution

should be synthesized in cooperation with the larger

semantic community.

7.4. Automatic Optimization of Rules and Queries
One highly desirable capability of a semantic modeling

environment is that it reformulate rules and queries to be

efficient in the target-reasoning environment. One of our

lessons learned is that a high level of skill is required to tune

rules and queries and it is unlikely that smart grid domain
experts will want to or have the time to become expert in

this activity. Just as SADL seeks to make model and rule

expression as natural and easy as possible, the next version

of SADL will pair a rule/query translator with each reasoner

plug-in so that translation from the English-like

representation of SADL to the target representation will

result in a rule or query that performs well in the target

execution environment. Our initial assessment is that this

goal should be achievable in at least the majority of cases.

Work in this area is planned in our future activities.

8. SUMMARY AND CONCLUSIONS
In this paper we report some of our observations from

applying an OWL version of the CIM to network model

validation and network tracing use cases. We found

semantic technology to be promising because it allows

standard, shared models (the CIM) to be easily extended for
specific purposes (our use cases) and made executable for

interactive development. We discovered that much better

translations of the CIM from UML to OWL are needed so

that model structure is maintained and so that standard XML

Schema datatypes are used. We also discovered that it is

insufficient to provide environments for model development

and extension and rule/query authoring but that the

environment should also optimize the translation of rules

and queries to perform efficiently in the target reasoner/rule

engine/query engine. This capability is important if domain

experts are to be successful in building and maintaining the

complex models necessary to deliver the promise of the
smart grid across its many facets.

References

[1] Crapo, Andrew, Xiaofeng Wang, John Lizzi, and Ron

Larson. The Semantically Enabled Smart Grid (2009). Grid

Interop 2009.

http://www.gridwiseac.org/pdfs/forum_papers09/crapo.pdf

(accessed September 9, 2010).

[2] Interoperability Context-Setting Framework,

GridWise Architecture Council Interoperability
Framework Team, March 2008.

http://www.gridwiseac.org/pdfs/interopframework_v1_1.pd

f (accessed November 13, 2010).

[3] Becker, David and Terrence L. Saxton. The Missing
Piece in Achieving Interoperability—a Common

Information Model (CIM)-Based Semantic Model, Grid-

Interop Forum 2007, pg 125-2.

http://www.gridwiseac.org/pdfs/forum_papers/125_paper_fi

nal.pdf (accessed September 9, 2010).

[4] IEC 61970-501 Ed.1: Energy management system

application program interface (EMS-API) – Part 501:

Common information model resource description

framework (CIM RDF) Schema. Available from IEC Store,

content description at

http://webstore.iec.ch/preview/info_iec61970-
501%7Bed1.0%7Den.pdf (accessed September 15, 2010).

[5] Ontology Definition Metamodel, Version 1.0. (May

2009). http://www.omg.org/spec/ODM/1.0/PDF/ (accessed

September 9, 2010).

 Crapo, Griffith, Khandelwal, Lizzi, Moitra, and Wang

Grid-Interop Forum 2010
8

 [6] Brockmans, Saartje, Peter Haase, and Boris Motik.

MOF-Based Metamodel, W3C Wiki document,

http://www.w3.org/2007/OWL/wiki/MOF-

Based_Metamodel (accessed September 14, 2010)

[7] Neumann, Scott, Jay Britton, Arnold DeVos, and Steve

Widergren. “Use of the CIM Ontology”, DistrubuTech

2006.

http://www.uisol.com/uisol/papers/Use_of_the_CIM_Ontol

ogy_DistribuTech_2006_Paper.pdf (accessed September 13,

2010) (see also accompanying presentation at

http://uisol.com/new/wp-

content/uploads/2008/05/use_of_the_cim_ontology_distribu

tech_2006.pdf)

[8] Catalog of UML Profile Specifications.

http://www.omg.org/technology/documents/profile_catalog.

htm (accessed September 9, 2010).

[9] Semantic Application Design Language (SADL), Open

Source project on Source Forge, overview at
http://sadl.sourceforge.net/sadl.html.

[10] Liang, Senlin, Paul Fodor, Hui Wan, Michael Kifer.

OpenRuleBench:An Analysis of the Performance of Rule

Engines, WWW 2009, Madrid.

http://www2009.org/proceedings/pdf/p601.pdf (accessed

September 15, 2010)

Biography

Andrew Crapo received a B.S. in Physics from Brigham

Young University in 1975, an M.S. in Energy Systems from

the University of Central Florida in 1980, and a Ph.D. in

Decision Sciences and Engineering Systems from
Rensselaer Polytechnic Institute in 2002. He is a senior

professional information scientist at the GE Global Research

Center where he has worked since 1980. His work has

focused on applications of information science to

engineering problems including applied artificial

intelligence, human-computer interactions, and information

system architectures. More recently he has focused on

modeling and the application of Semantic Web technologies

to engineering and business problems.

Katrina Griffith is an NTI Technologist with GE Energy’s

Software Systems Engineering Group. Her current work

focuses on the application of data services, data modeling
and semantic technologies for GE’s Smart Grid and Total

Plant Optimization initiatives.

Ankesh Khandelwal is a PhD candidate, in his 3rd year, at

RPI under Professors James Hendler and Deborah

McGuinness. He is most interested in rule based inferencing

over the web, in particular distributed rule based

inferencing, although his current focus is on developing

theory to declaratively model natural and scientific

processes. In the past he has worked on scalable OWL

inferencing, inference engines for OWL 2 RL and OWL 2

QL, and formalization of a rule based policy language

(Accountability in RDF- AIR). He was involved with this

project as a summer intern at GE Global Research.
John Lizzi received a B.S. in Computer Science from Siena
College in 2001, a M.S. in Computer and Systems

Engineering from Rensselaer Polytechnic Institute in 2003,

and a M.B.A. from the State University of New York at

Albany in 2008. Since 2000, John has been working as a

Research Scientist in the Computing and Decision Sciences

Group at General Electric Global Research, in Niskayuna,

NY. John has worked on developing technology and

solutions in a variety of domains including maintainability

engineering, air traffic management, television broadcast

operations, healthcare, and energy services. His primary

interests include software architecture, enterprise

integration, modeling, and simulation.

Abha Moitra received a M.Sc. in Physics from Birla

Institute of Technology, India in 1977, and a Ph.D. in

Computer Science from Tata Institute of Fundamental

Research, India in 1981. She is a Senior Computer Scientist

at the GE Global Research Center where she has worked

since 1989. Her research interests are in Social Networks,

Knowledge Management, Natural Language Processing,

Semantic Analysis, Optimization and Data Provenance.

Recently, she has been leading a project that is developing a

system for monitoring and measuring online discussion and

understanding how information spreads on the web.

Xiaofeng Wang received B.S. and M.S. degrees in

electrical engineering from Tsinghua University, Beijing,

China, in 1995 and 1998, respectively, and the Ph.D. degree

from the Electrical and Computer Engineering Department

of Michigan Technological University, Houghton, in 2001.

Currently, he is a System Engineer with GE Energy. His

interests include power system modeling, enterprise

integration, Smart Grid, and Semantic Web Technology.

