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Abstract 

CIM is the key to smart grid interoperability. This being the 

case, we are experimenting with different approaches to 

utilizing the CIM as a semantic model for Energy 

applications.  In this paper we identify some of the 

challenges we have encountered applying an OWL 

representation of the CIM to a common industry application 
for network model validation. Some challenges have to do 

with differences between UML, the language in which the 

CIM is maintained, and RDF/OWL, the semantic 

representation we have chosen for our experiment. We 

highlight some of differences between UML and OWL and 

discuss what they might mean in a smart grid context and 

the advantages and disadvantages of using each 

representation in Energy applications.  Still other problems 

have to do with the processes around translating the CIM 

models from UML to OWL and managing model changes. 

Finally we propose some necessary conditions for 

addressing these challenges. 

1. INTRODUCTION 
It has been proposed that shared semantic models will be the 

foundation of interoperability for the smart grid [1]. This is 

supported by the GridWise Architecture Council’s 

Interoperability Framework, where semantics is not only a 

central layer but also addresses many of the cross-cutting 

issues [2]. Semantic models ensure that the individual data 

sources do not define the semantics and the syntax of the 

data [3]. Rather these are defined by shared models. The 

International Electrotechnical Commission (IEC) Common 

Information Model (CIM) represents the most complete and 
widely accepted model for generation, transmission, and 

distribution of electrical energy. Using the CIM as a starting 

point, we are evaluating the potential of semantic 

technology, as envisioned by the Semantic Web community, 

as a basis for building model-driven applications for smart 

grid functionality such as network model validation and 

network tracing. Our network tracing use case focuses on 

determining what equipment in an electrical network is 

topologically (electrically) connected to other equipment. 
This paper reports our initial experiences and conclusions 

from our investigation. We have found both promise and 

challenge in applying semantic technology to our smart grid 

use cases. Some challenges have to do with the CIM and the 

processes around its evolution. Other challenges have to do 

with applying semantic technology and suggest the need for 

better tools to support modeling and model application. 

2. THE CIM AS A SEMANTIC MODEL 
The CIM is expressed and maintained in the Unified 

Modeling Language (UML). However, the Web Ontology 

Language (OWL) is better suited to our objectives of model-

driven applications and interoperability for several reasons. 
An OWL model can be checked for consistency and 

validated against given criteria using available reasoners 

whose behavior is specified by open standards. OWL 

models provide a conceptual foundation upon which to layer 

domain knowledge captured as rules. For example, domain 

knowledge for our use case included how to trace a network 

taking into account switch positions, transformers, and 

phase.  

While there is an IEC standard covering the generation of  

RDF Schema from the CIM-UML, the standard does not 

address generation of an OWL version of the CIM [4]. We 
were able to obtain two versions of the CIM in OWL 

representation, which we used in our research. We are aware 
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that these translations were not guided by an accepted 

standard. In fact, one of the purposes of this paper is to 

suggest some of the issues that need to be addressed by such 

a standard. 

While a model in either UML or OWL might be considered 

a “semantic model”, there are some important differences. 
The two modeling languages were designed for different 

purposes from differing points of view and have different 

strengths and weaknesses. UML was born in the software 

engineering domain as a language for designing object-

oriented software artifacts. It has also been used extensively 

for data modeling. OWL has its origin in formal modeling 

and logical inference and classification. It is instructive to 

explore some of the important similarities and differences 

between UML and OWL, especially as they relate to 

modeling for the smart grid. Unless otherwise noted, the 

primary reference for the comparison that follows is the 

Ontology Definition Metamodel, Version 1.0 [5].  

The meta-model of UML (expressed in OMG’s Meta-Object 

Facility, or MOF) captures four main concepts: 1) classes, 

2) associations, 3) datatypes, and 4) packages. Also 

expressible in MOF [6], the OWL meta-model includes 1) 

classes, 2) properties, 3) instances, 4) literals, and 5) 

ontologies. Each meta-model includes other concepts such 

as cardinality. There is a reasonable correspondence 

between the two meta-models. The differences of 

significance are in the details.  

A UML class and an OWL class are both based on set 

theory and so correspond reasonably well. However,  
OWL’s set semantics are more complete. UML associations 

can be translated to OWL properties although the UML 

meta-model is much more complex. UML associations are 

defined only in the context of the classes at the end points 

whereas OWL properties are first class citizens and can 

exist independent of any domain or range specification. 

Individuals in OWL can exist and have properties 

independent of any class membership while UML runtime 

instances exist only at the MOF M0 level and so exist as 

instances of a specific class.  A UML package, which 

corresponds to an XML namespace, is more or less 

equivalent to an OWL ontology, although the details of 
naming and importing are not identical. UML lacks a formal 

model-theoretic semantics and what might be expressed as 

class restrictions in OWL require constraints in the Object 

Constraint Language (OCL) for a UML model. As OCL has 

neither a formal model theory nor a formal proof theory, 

automated reasoning over UML models is not possible, or at 

least not well defined. 

It has been suggested that the CIM will eventually be 

expressed and maintained as a set of ontologies within a 

federation of ontologies [7]. Such a modular and integrated 

view of the CIM leverages the modular and extensible 

capabilities of OWL and the envisioned distributed nature of 

ontologies in the Semantic Web. OWL is designed to 

facilitate the organization of models in a hierarchy of 

imported models with “core” or “upper-level” models at the 

root. More specialized (e.g., CIM package-specific) or 

lower-level models then extend the root models with 
additional classes, subclasses, properties, rules, etc. 

A hierarchical model structure is consistent with the nature 

of UML, where packages create a hierarchy of imports. 

Each package corresponds to a single namespace. Figure 1 

shows some of the package structure of the UML CIM 

model. Of course the overall model structure is not always a 

hierarchy—packages may import each other, directly or 

indirectly, creating a lattice of submodels. 

 

Figure 1: Partial Package Structure of CIM in UML 

At a more abstract level, Figure 1 in Becker and Saxton [3, 

pg 3] shows three-layer enterprise semantic model 

architecture. The CIM resides in the top Information layer 
while profiles reside in the next-lower Contextual layer and 

“define a subset of the models in the Information layer 

needed for a particular business purpose”. A UML profile 

can both extend a UML model and identify a subset of the 

base model in an additive manner [8]. Since UML profiles 

can import other profiles, it should be possible to use UML 

profiles to create a set of OWL models which, via the 

owl:imports functionality, form a hierarchy of models with 

the most specific models being created by profiles not 

imported by any other profile. OWL imports will also 

support a lattice model structure. 

In summary, while there are differences in UML and OWL 

models, the UML representation of CIM provides most of 
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the information that one would want in a set of OWL 

models, provided that the translation preserves modularity. 

3. BENEFITS OF USING CIM IN OWL FORMAT 
Several benefits of using an OWL version of the CIM are 

apparent from our research.  

3.1. Extensibility of the CIM 
We found it very easy to extend the CIM model by defining 

new subclasses of existing CIM classes and by defining 

additional properties on existing CIM classes. These 

extensions, defined in new ontologies that imported the 

CIM OWL model, worked very well as the basis for 

composing rules that utilize both CIM concepts and new 

concepts and/or new properties in the same rule. This made 

it easy to make small, independent extensions of the CIM to 

achieve specific purposes.  

3.2. Executable Models 
One of the biggest benefits of using OWL was the 

executable nature of the models. Using the SADL-IDE [9] 
as a development environment, we generated test cases that 

imported the appropriate CIM concepts and/or extensions.  

(SADL models are translated to OWL and rule files, which 

are then used by the reasoner to do logical entailment, rule-

based inference, and answer queries.) A test case explicitly 

tested for specific inferred values and/or included queries 

that displayed inference results. Test case results were 

accompanied, if desired, by derivation information, at either 

a shallow or a deep level, to provide a logical explanation of 

how values were derived. This made the building and 

testing of models and rules a very interactive process, 
leading to a much shorter design cycle than one would 

expect if UML models were used to generate source code, 

which would then require additional test code to be written 

to exercise and validate the models. 

3.3. Model Validation 
Validation of OWL models can occur at multiple levels. At 

one level an OWL reasoner, such as Jena or Pellet, can 

detect logical inconsistencies in models or instance data. At 

another level a modeler can explicitly generate a set of 

validation rules that test instance data to make sure that it 

conforms to cardinality or other constraints. We found it 

relatively easy to do instance data validation using either 
method or a combination of the two. 

3.4. Integrating Domain Logic as Rules 
In our investigations, we found that we were able to 

incorporate domain logic into rules in a straightforward 

manner for both network model validation and network 

tracing. For example, we were able to formulate phase 

compliance checks as part of network tracing.  

4. CHALLENGES USING THE CIM 
Some of the challenges we encountered in our research were 

due to the nature of the OWL version of the CIM model. In 

large measure these issues arose from the way the CIM was 

translated from UML to OWL rather than to fundamental 

differences between UML and OWL. 

4.1. Modularity and Namespaces 
Modularity is very import in large, complex models. Proper 

modularization of a model enables parallel development and 

maintenance of the individual submodels, makes it easer for 

people to grasp the overall model structure, and allows 

appropriate parts of the model to be utilized for different 

purposes without requiring that extraneous model elements 

be included. Of course the interfaces between the modules 

must be well-managed. 

The OWL CIM models we used had all available 

namespaces (packages) mixed in a single model file with no 

use of the namespace (base URI) of this file in the file 
content. This was unexpected based on our previous 

experience using hierarchical models expressed in OWL. It 

necessitated that we load the entire model regardless of what 

parts were actually needed. It also made it difficult to 

comprehend what was in the model as there was no higher-

level view of model structure readily available. 

This problem clearly derived from the translation of UML to 

OWL rather than in the CIM itself. However, it did 

highlight the need to preserve the CIM structure in the 

translation process so that the designed capacities of OWL 

to organize models into a lattice or hierarchy can be fully 
leveraged. Interestingly, in one of the translations we 

utilized, the OWL model included a namespace for “UML” 

and within that namespace defined a Package class used 

only in values of the annotation property rdfs:isDefinedBy. 

(Annotation properties are used in OWL to document the 

model but are not normally used in logical inference.) 

Nesting of annotations was used to capture the UML 

package hierarchy. For example, the CIM concept 

HydroTurbine was defined by the Package instance 

Package_GenerationDynamics, which in turn was defined 

by the Package instance Package_Generation, which in turn 

was defined by the Package instance Package_IEC61970.  
As a result, the package hierarchy of the UML model was 

not actually reflected in a hierarchy of ontologies and OWL 

imports. As annotations, the package structure was 

explicitly excluded from normal reasoning processes. It is 

important to generate OWL models that enable the 

modularity and reasoning capabilities that are OWL 

strengths. 

4.2. Datatypes 
Another challenge was found in the inconsistent handling of 

datatypes. When datatypes such as strings, numbers, dates, 
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etc. specified in the UML model are translated to OWL, it is 

highly desirable that they appear as XML Schema primitive 

datatypes. This allows the built-in capabilities of reasoners, 

rule engines, and query engines to properly handle routine 

tasks such as arithmetic operations, comparisons, and 

regular expression matching. It also permits model 
consistency checking to be more useful. The alternative is to 

custom-build new plug-in capabilities to handle essentially 

equivalent but model-specific datatypes or classes. 

Vestiges of this problem were apparent in our OWL CIM 

models. In one version, an rdfs:Datatype named String was 

defined in the model namespace but no further definition 

was provided, making it impossible to relate it to an 

xsd:string. A comment annotated String: “A string 

consisting of a sequence of 8 bit characters…” In the other 

version of a CIM OWL model, properties were defined as 

being of type owl:DatatypeProperty but then given an 

owl:Class as a range. For example, the 
owl:DatatypeProperty TransformerWinding.xground had 

range Reactance, an owl:Class. This violates the definition 

of DatatypeProperty in OWL. The latter was clearly a 

translation issue but the former translation may be 

consistent with IEC 61970-501 [5] 

5. CHALLENGES USING SEMANTIC MODELS 
Some challenges we encountered were due to the nature of 

semantic modeling itself, and not CIM or smart grid 

specific. 

5.1. Efficient Representation of Rules, Efficient 

Queries 
We found that performance of rules and queries depended 

dramatically on their exact formulation Getting these 

formulations right is knowledge that may be difficult for a 

domain expert to acquire.  Note that by rule we mean a set 

of premises, also known as the rule body, associated with a 

set of conclusions, also known as the rule head. If all of the 

conditions in the premises are satisfied, the rule “fires” and 

the conclusions are effected, potentially inserting new 

triples into the knowledge base (triple store). The individual 

conditions of the premise and the individual consequences 

of the conclusions are referred to as clauses. While this 

section addresses only rules, queries that select information 
from the knowledge base are subject to similar differences 

in performance depending on how they are structured and 

therefore are candidates for optimization. 

We found that the techniques and styles of rule writing for 

efficiency can be broadly classified into two categories – 

those that are independent of the reasoner being employed 

and other techniques that are specifically geared to a 

specific reasoner. Some of the reasoner independent 

techniques correspond to well known techniques from 

software engineering, database query optimization, etc. 

Reasoner-dependent techniques were driven by reasoner 

characteristics, i.e., whether the reasoner used forward or 

backward reasoning.  Some of the techniques for writing 

rules efficiently are as follows. 

• Reorder the clauses in order to reduce the amount 

of matching instance data as early as possible. For 
example, if one clause matched on (a) the property 

cim:ConductingEquipment.ClearanceTag having a 

value and another class matched on (b)  the 

property cim:ConductingEquipment.Terminals 

having a value, and it was known that few 

instances would match clause (a) while many more 

instances would match clause (b), then clause (a) 

should appear first.  

• Refactor the rules to pull out common clauses from 

multiple rules as a separate rule so that they are 

evaluated fewer times. 

• Convert expensive checks into equivalent but less 

expensive checks if possible. For example, if the 

type can be inferred by checking for a property 

assertion, then expensive type inference through 

subclass inference can be avoided. 

• Formulate recursive definitions for predicates as a 

combination of a non-recursive part (also known as 

a stop predicate) and a recursive part.  

• Use tabling for recursive rules if backward rules 

are being used. We found that left recursion 

(evaluating recursive clause before stop predicate) 

works better for reasoners that support tabling. If 
the reasoner doesn’t support tabling then right 

recursion (evaluating stop predicate before 

recursive clause) gives better performance. 

• Some reasoners natively support OWL inference, 

but if one is interested only in partial OWL 

inference then turning off native support and 

introducing explicit rules for OWL inferences of 

interest may improve performance. 

• If the reasoner supports backward rules (goal 

directed reasoning), convert forward rules into 

backward rules whenever possible. 

• In backward reasoning, duplicate rules and reorder 

clauses differently for different combination of 

variable bindings. The order should be dictated by 

the variables that are bound. For example, the rule 

that infers the transitive “ancestorOf” relationship 

can be duplicated for four different scenarios. 

When the ancestor is bound, the following rule is 

used: 
 



 Crapo, Griffith, Khandelwal, Lizzi, Moitra, and Wang 

Grid-Interop Forum 2010  
5

#left bound 

[ANC-lb: (?p1 ancestorOf ?p3) <-  

 bound(?p1),  

  (?p1 ancestorOf ?p2) ,  

  (?p2 parentOf ?p3)] 

 
Whereas when the descendant is bound, the 

following rule is used: 
 

#left unbound 

[ANC-rb: (?p1 ancestorOf ?p3) <-  

  bound(?p3),  

  (?p2 ancestorOf ?p3) ,  

  (?p1 parentOf ?p2)] 

 

Note that the ordering is such that the clause with a 

bound variable occurs before the rest of the 

clauses. This helps in reducing the matching 
instance data. When neither of the variables, or 

both the variables are bound the order does not 

matter. 

•  Reorder “not” and boolean built-ins for late but 

eager evaluation. That is, these clauses should be 

ordered so that they appear as soon as all the 

needed variables are bound.  

5.2. Open World versus Closed World 
OWL reasoners normally operate under an open world 

assumption (OWA). This essentially means that something 

cannot be concluded to be false just because it isn’t 
currently known to be true. Geared towards distributed 

knowledge in a World Wide Web, this makes sense. It is 

unlikely that one can ever assume that all facts are known—

we know what we know and not anything else (yet).  

However, the OWA can lead to some initially surprising 

results. For example, we placed a cardinality restriction on 

cim:EnergyConsumer requiring it to be related by 

cim:Terminal.ConductingEquipment to an instance of  

cim:Terminal. Then we created a test case with an instance 

of cim:EnergyConsumer without such a relationship and 

asked the reasoner to validate the model. The lack of any 

complaint was surprising until we realized that under the 
OWA we could not expect the reasoner to conclude that just 

because it didn’t know about such a relationship did not 

mean it could conclude that there wasn’t one and so the 

cardinality constraint was not identified as a violation. Note 

that we were able to implement constraint checking on 

existing data using a custom Jena built-in function as a 

validation rule premise. The built-in, which is a black box to 

the reasoner, views the data under the Closed World 

Assumption (CWA). 

5.3. Understanding Negation and How It Can Be Used 
OWL is based on classical negation, which is monotonic 

under the OWA. This means that if something is proven to 

be false, addition of new information does not change that.  

Under the CWA negation is non-monotonic. There are 

algorithms of differing complexities to evaluate rules with 
non-monotonic negation. The difference in reasoning 

approach (algorithm) leads to differences in the semantics of 

rules with negation, and differences in the semantics leads 

to differences in expressiveness.  

Examples of different semantics/negations  include, in order 

of their expressiveness: monotonic negation, predicate-

stratified negation, locally-stratified negation, well founded 

semantics (WFS), answer set semantics, and stable model 

semantics. The latter 3 are most general and equally 

expressive. When an algorithm is applied to rules with 

higher expressiveness, non-sound results may be deduced.  

6. REASONER/RULE ENGINE EVALUATION  
Network tracing was our most complex use case from a 

performance and scale perspective and was utilized to 

evaluate possible reasoners/rule engines.  The network 

tracing use case consisted of two parts.  The first, simpler 

use case was focused on being able to define the set of 

instances of cim:ConductingEquipment (CE) “directly 

connected to” a given instance of CE.  The second, more 

complex use case was defined as “topologically connected 

to”.  This use case focused on defining the set of instances 

of CE electrically connected to a given instance of CE.  

Both use cases were executed using data sets ranging from 
10,000 to 240,000 triples. 

We evaluated several reasoners/rule engines for potential 

use in executing our use cases. These fell into three 

categories: 1) Java-based generic rule engines, 2) general-

purpose logic programming systems, and 3) more targeted 

“semantic” reasoners (reasoners that accept RDF data and 

natively support OWL semantics). The goal of this 

evaluation was to illuminate the CIM model execution 

landscape with respect to these technologies and key 

attributes of interest (execution time, scalability, etc.), and 

to subsequently direct the next generation of proof of 

concept development. 

In the first category we evaluated Drools and JRules. In 

each case, we translated the CIM-OWL model into Java 

code (classes) and a network data set containing about 

40,000 triples into an in-memory collection of inter-related 

Java instances accessible to the rule engine. While these rule 

engines worked well on very small problems, we were 

unable to get either to work on a larger data set (> 25,000 

triples) without running out of memory, even for the simpler 

use case (directly connected) running on a 64-bit machine. 
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In the second category we evaluated XSB and YAP. For a 

relatively large data set, YAP ranged from very slow (> 30 

minutes) to quite fast (~10 seconds) on the very next run, 

reflecting its adaptation of indexing to the problem at hand. 

In the third category we initially considered 

AllegroGraph®, OntoBroker®, Pellet/SWRL, and Jena. We 
did more extensive testing on AllegroGraph®, 

OntoBroker® and Jena. AllegroGraph® provided query 

results for “topologically connected to” on a data set of over 

130,000 triples in approximately 20 seconds. On the same 

data set, Ontobroker® (without performance optimization) 

gave asymmetrical performance: ~2 seconds for  left-bound 

(EC1 topologicallyConnectedTo ?X) vs. ~78 seconds (36 

secs on a 64 bit machine) for right-bound (?X 

topologicallyConnectedTo EC1) queries. After employing 

several of the techniques described in Section 5.1, Jena 

answered the same query on a data set of 180,000 triples in 

~5 seconds. 

It is important to note that these rule languages and engines 

employ different reasoning methods and support different 

expressivities for negation. SWRL doesn't support any form 

of negation, Pellet performs sound OWL reasoning and 

supports classical negation, Ontobroker® supports WFS 

negation, and XSB, YAP and AllegroGraph® are Prolog 

implementations that support stable model semantics 

(default negation). Jena, through built-ins functions, allows 

a rule premise to test for the absence of a triple matching a 

simple pattern in the model. Drools and JRules support 

negation that can be referred to as being non-logical, 
because the evaluation of rules is not based on 

(mathematical) logic. 

Furthermore, although XSB, YAP and AllegroGraph® are 

Prolog implementations, and Jena evaluates backward rules 

in similar fashion, XSB, YAP and Jena support tabling of 

predicates but AllegroGraph® does not..   

We initially scoped the technology landscape along five 

dimensions of interest: 

• Model storage – CRUD (create, read, update, 

delete) performance, support for transactions, 

security, storage type, etc. 

• Model import/extension/development - model 

harmonization, storage standards support, support 

for distributed models, modularity, batching 

capabilities, etc. 

• Model interaction – usability for subject matter 

experts (model construction, validation, 

maintenance), support for model validation and 

inference, model query expressivity and standards 

support. 

• Business rule extension development – the ability 

to leverage existing models to build, validate, and 

execute rules. 

• Business rule management and integration – the 

ability to manage and integrate business rules into 

existing components and systems. 

Each of the dimensions of interest was further broken down 

into individual attributes with defined scales to be used in 

scoring the various technologies. 

The use cases were utilized to evaluate the aforementioned 

technologies versus each attribute. Our initial findings 

indicate an integrated stack of technologies (leveraging a 

back-end triple store coupled with one or more semantic 

rule engines, and a SADL front-end) will provide the best 

performance for our attributes of interest.  Findings indicate 

Ontobroker® and AllegroGraph®, coupled with a SADL 

front end scored highest, and warrant the next level of 
evaluation.  We’ve also found the forward-chaining RETE-

based rule engines do not provide the execution 

performance required for our use cases at the scale of 

interest due to runtime memory limitations.  This is 

consistent with findings from previous benchmarking 

activity [10]. 

7. MINIMAL REQUIREMENTS OF SEMANTIC 

CIM, DESIRABLE TOOLS CAPABILITIES 
Our research to-date suggests that a standard for OWL 

generation from UML CIM is very important and that this 

standard should ensure that the OWL generated is usable by 

semantic tools ranging from model viewers/editors to 
reasoner/rule engines and query engines. In addition, our 

experience indicates that the success of semantic technology 

as a modeling paradigm for smart grid will be significantly 

enhanced if the tools enable domain experts to build models 

and capture domain rules without being required to gain 

deep knowledge of the intricacies of reasoning or rule and 

query efficiency. We make the following recommendations. 

7.1. Cleaner Tie to Standard Datatypes 
The IEC standard for generation of RDF from UML (IEC 

61970-501, see [4]) does not appear to make the connection 

to XML Schema datatypes. It is important that the standard 
for generation of OWL from the UML CIM make that 

connection so that the resulting OWL models will be subject 

to standard OWL model validation, consistency checking, 

reasoning, and querying.  It appears that the groundwork for 

this is being laid as the CIM|EA Web site reported on 

September 1, 2010, “The most exciting new addition to the 

tool for this public release is the inclusion of XSD 

support…” (see http://www.cimea.org/). 
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7.2. Modularity and Extensibility 
Modularity is key to a model’s ability to be maintained and 

used by a diverse set of stakeholders. That modularity must 

allow “slices” of the model to be used and extended for 

specific purposes. The package structure of UML has the 

capability to translate to a lattice or hierarchy of OWL 
models that can be used in a federation of ontologies [7]. It 

is essential that the translation produce a set of OWL 

models that in every way maintain the modularity and 

structure of the CIM UML model. 

7.3. Versioning and Feedback Mechanisms 
While this requirement for a robust shared model is not a 

direct observation of our research, we will include it for 

completeness. Versions of CIM models should be versioned 

using the model versioning mechanisms so that reasoners 

and other tools that load imported models can verify that 

supported versions have been retrieved. A relatively 

primitive version mechanism is part of OWL and is a good 
starting point. An importing model can specify what 

version(s) of an imported model are acceptable.  

CIM model users will extend the CIM models to meet their 

specific objectives. This will include creating subclasses of 

a CIM class when finer granularity is needed and/or adding 

new properties when additional information about class 

members must be modeled. Some of these extensions will 

be model fragments that would be widely useful and should 

therefore be factored into future versions of the CIM either 

by direct contribution to core submodels or by providing 

shared user contribution models. The process for 
consolidating feedback to create next versions should be 

well-founded and well-documented so that all stakeholders 

can contribute to the shared models. Since this is a problem 

common to semantic modeling in other domains, a solution 

should be synthesized in cooperation with the larger 

semantic community. 

7.4. Automatic Optimization of Rules and Queries 
One highly desirable capability of a semantic modeling 

environment is that it reformulate rules and queries to be 

efficient in the target-reasoning environment. One of our 

lessons learned is that a high level of skill is required to tune 

rules and queries and it is unlikely that smart grid domain 
experts will want to or have the time to become expert in 

this activity. Just as SADL seeks to make model and rule 

expression as natural and easy as possible, the next version 

of SADL will pair a rule/query translator with each reasoner 

plug-in so that translation from the English-like 

representation of SADL to the target representation will 

result in a rule or query that performs well in the target 

execution environment. Our initial assessment is that this 

goal should be achievable in at least the majority of cases. 

Work in this area is planned in our future activities. 

8. SUMMARY AND CONCLUSIONS 
In this paper we report some of our observations from 

applying an OWL version of the CIM to network model 

validation and network tracing use cases. We found 

semantic technology to be promising because it allows 

standard, shared models (the CIM) to be easily extended for 
specific purposes (our use cases) and made executable for 

interactive development. We discovered that much better 

translations of the CIM from UML to OWL are needed so 

that model structure is maintained and so that standard XML 

Schema datatypes are used. We also discovered that it is 

insufficient to provide environments for model development 

and extension and rule/query authoring but that the 

environment should also optimize the translation of rules 

and queries to perform efficiently in the target reasoner/rule 

engine/query engine. This capability is important if domain 

experts are to be successful in building and maintaining the 

complex models necessary to deliver the promise of the 
smart grid across its many facets. 
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